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The data from a series of experiments conducted to measure the
longitudinal transient response characteristics of a dynamically
similar quad-duct V/STOL aircraft similar to the X-22A configura-
tion are analyzed to determine the stability derivatives of the
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This report is published for the exchange of information and the
stimulation of ideas.




i gt e

ST,

Task 1F162204A14233
Contract DAAJO2-67-C-0025
USAAVLARS Technical Report 68<49D

May 1969

AN INVESTIGATION OF THE DYNAMIC STABILITY
CHARACTERISTICS OF A QUAD CONFIGURATION,
DUCTED-PROPELLER V/S™NL, MODEL »

Volume IV.

T i i i, Wit S

THE LONGITUDINAL STABILITY CHARACTERISTICS OF A
QUAD CONFIGURATION, DUCTED-PROPELLER V/STOL MODEL .
AT HIGH DUCT INCIDENCE, ;

Aerospace Sciences Report 848

By :
Ay

Howard C. Curtlss, Jr.

Prepared by
Department of Aerospace and Mechanical Sciences

Princeton University ]
Princeton, New Jersey .

for

U, S. ARMY AVIATION MATERIEL LABORATORIES
FORT EUSTIS, VIRGINIA

This document is subject to special export controls
and each transmittal to foreign governments or foreign
nationals may be made only with prior approval of US Army
Aviation Materiel Laboratories, Fort Eustis, Virginia 23604.

—




SUMMARY

The results of experiments conducted to d termine the dynamic stability
characteristics of a dynamically similar model of a quad-duct V/STOL air-
craft are reported in References 1 and 2. Portions of these data that
pertain to the longitudinal dynamics of the vehicle at five duct incidences
were analyzed to determine the stability derivatives of the vehicle. The

analysis and the resulting stability derivatives are presented and cis=-
cussed in this report.

The measured time histories indicated that the data could be analyzed on
the basis of linearized small perturbation equations. Root locus tech-
niques were used to analyze the data.

The full-scale derivatives determined from the analysis that correspond to
a ve .icle very similar to the Bell X-22A are presented.

The transient motions of the model were unstable at all duct incidences
except 50°, the lowest incidence investigated.
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References 1 and 2 present data from a series of experiments conducted to
measure the longitudinal transient response characteristics of a dynami-
cally similar quad-duct V/STOL model using the Princeton Dynamic Model
Track., This program is part of a continuing effort using the Princeton
Dynamic Model Track to provide data on the dynamic stability of V/STOL
alrcraft at low speeds. The model is similar in configuration to the Bell
X-22A, with a scale factor of 0,145, The model is shown mounted on the
test apparatus in Figure 1, A close-up view of the model 1s shown in
Figure 2. A general arrangement drawing of the model is given in Figure 3.
Differences between the Bell X-22A and this research model are described
in the section entitled Description of Apparatus and Experiments.

This report analyzes the data from References 1 and 2 to determine the 21
longitudinal stability derivatives of the vehicle in low-speed/high-duct- foy
incidence flight conditions, including hovering flight. The test program L |
is described in detail in References 1 and 2; thus, only a brief discussion
of the program is included in this report. The test conditions analyzed-
are listed in Table I.

Transient measurements in the flight conditions of interest indicated that .
the dynamic motions of the model could be described by conventional, ; |
linearized small-perturbation equations. The following anelysis is based ;
on that assumption. Discussion of the analysis of the data is phrased in |
terms of model parameters., The values of the stability derivatlves of f
the full-scale sircraft are discussed in the section entitled Stability |
Derivatives of the Full-Scale Alrcraft. The scaling laws used to design
the model result in the conversion factors given in Table II, which are '
used for interpretation of model date in full-scale terms.,
|
|
|
|

The model was found to be dynamically unstable at all but the lowest duct
incidence examined. Data were taken on the response of the basic model,

as well as with varying amounts of rate feedback (fore and aft differential
propeller blade angle proportional to pitching rate), to assist in the
analysis.

It will be noted that in the flight conditions at duct incidences of 60° :
and 50°, the cg of the model was displaced from the pivot axis of the |
model., Balance weights were added to the model at these trim conditions |
to reduce the amount of differential propeller blade angle required for |
pitching moment equilibrium.

|
1
For analysis purposes, it i1s possible to locate the origin of the axis |
system either at the cg of the model or at the pivot axis. It was con- |
sidered to be more convenient to locate the origin of the axis system at |
the pivot axis and to add terms to account for the displacement of the cg l
from this location., The stability derivatives are presented about the j

|

l
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pivot axis, which corresponds to the cg position of the Bell X-22A glven
in Reference 3 (WL 139, FS 312).

All linear velocities of the model are
the linear velocities of the pivot axis.

Various methods of analyzing the data are possible, A convenient approach,
when limited-degree-of-freedom data are available, employs root locus

techniques as described in the section entitled Experimental Results and
Analysis of Data.

While only the frequency and damping characteristics of the motions are
presented and used in the analysis, various other properties of the time
histories may be used to provide additional information. Other measured
data, such as the phase angle between the pitch angle and the horizontal

velocity perturbation, were used to check the results obtained from the
method of analysis described in the text that follows.




DESCRIPTION OF APPARATUS AND EXPERIMENTS

TEST FACILITY

The Princeton Dynamic Model Track is designed exprecsly for the study of
the dynamic motions of helicopter and V/STOL moaels at equivalent flight
speeds of up to 60 knots (for a one-tenth scale model). Basic components
of the facility include a servo-driven carriage riding on a track 750 feet
long, located in a building with a cross secztion of 30 by 30 feet; the
carriage has an acceleration potential of 0.6g and a maximum speed of LO
feet per second. A detailed description of the facility and the testing
tecnniques employed may be found in Reference L.

A model can be attached to the carriage by one of several booms. The
mount used to conduct longitudinal investigations is shown in Figure 1.
This mount permits relative displacements of the model with respect to

the carriage in horizontal and vertical directions. The mcdel is sup-
ported on a three-axis gimbal system that allows selection of any or all
of the three angular degrees of freedom. Horizontal relative motion of
the model with respect to the carriage is sensed and used to command tis
carriage to follow the model in a closed-loop fashior Similarly, verticel
displacement of the model with respect to the carriage commands the boom
to move vertically. This servo operation of the carriage allows the model
to fly "free", with no restraints on the dynamic motions being investi-
gated. This method of testing may be considered to be similar tc dynamic
flight testing, but considerably more control over the experiment is
possible.

MODEL

A photograph of the model is shown in Figure 2. A general arrangement
drawing is presented in Figure 3. Figure L4 shows the pivot axis, cg
location, and reference locations of the model. The model's pertinent
dimensions and inertia characteristics are listed ‘n Table III. The model
was designed as a general research model for inves.’gation of the dynamic
stability characteristics of various quad configuration V/STOL aircraft as
described in Reference 5.

This dynamic model is powered by a 200-volt, :00-cycie, 3-phase electric
motor. The motor drives the four ducted propellers through a central
transmission and various right-angle gearboxes. The aerodynamic shape of
the model is obtained through the use of a Fiberglas skin with Styroifoam
stiffeners. The propeller blades are made with a plastic foam core and
Fiberglas skin. The geometric characteristics of the propeller are chown
in Figure 5, and the geometric characteristics of the duct and elevon are
shown in Figures 6 and 7. The duct shape is identical to that of the
Bell X-22A aircraft.
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Model control positions are set from a control console on the carriage.
The blade pitch angles of each of the four propellers are electrically
controllable. Also, the deflection angles of the elevons are electrically
controllable. All of these control systems are closed-loop position
controls and are used as such in the portions of the experiments involving
feedback to alter the transient motions of the model. The dynamic charac-
teristics of these feedback loops are such that the time response of the
control is negligible in the frequency range of interest. Although the
control servo loops are nonlinear, using polarized relays for power ampli-
fication, they can be characterized as having a closed-loop natural
frequency of approximately 10 cycles per second, with a damping ratio of
approximately seven-tenths. The servo gear ratios were selected so that
the rate limits arising from the rpm limitations of the control drive
motors were equal to, or greater than, scaled rate limits determined from
full-scale Rell X-22A values, as given in Reference 3.

This research modsl differs from the Rell X-22A in the following
particulars:

1. The elevon on the model differs from that on the full-scale air-
craft. The model elevon has no movable surface forward of the
hinge line, and its hinge line is located below the trailing gdge
of the duct, as shown in Figure 7. While these differences would
affect the control effectiveness and the control loads, they,
would not be expected to have any significant effect on the

dynamic motions,

2. The duct rotation point is at a different location on the model
(84 percent ¢) than on the full-scale aircraft (55 percent c).

With the ducts at 90° incidence, the propeller hubs are in the
sams relative position on the model as they are on the full-scale
aircraft. The cg of the model is higher (1.2 percent ¢) on the
model, with respect to the propeller hubs, than it is on the
full-scale aircraft.

3. For the tests at 90°, 80°, and 70° incidence, the vertical tail
on the model is smaller than the one on the full-scale vehicle,
as shown in Figure 3. The scaled vertical tail, also shown in
Figuro 3, was used for the tests at duct incidences of 60° and
50°, Tnis difference in vertical tail area would not have a
significent effect on the longitudinal dynamic stability charac-

teristics.

This model was planned as a general research model; numerous other quad
configuration layouts can be simulated through the use of interchangeable
parts as described in Reference 5. No attempt was made in the design
stage to simulate the X-22A precisely, However, the modifications de-
scribed above will not result in appreciable differences ian the model
dynamic stability characteristics.
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EXPERIMENTS

The experiments that were conducted to determine the stability character-
istics of the model consisted of transient response measurements in

various longitudinal degrees of freedom. The data are presented in
References 1 and 2, and the test conditions are given in Table I. Measure-
ments were also made with various levels of rate feedback. Since the
model was unstable, or at best neutrally stable, in the majority of flight
conditions investigated, no predetermined control inputs were used to
excite the motion of the model.




EXPERIMENTAL RESULTS AND ANALYSIS OF DATA

The transient response data presented in References 1 and 2 were analyzed
to determine the pericd and damping of the longitudinal modes of motion of
the model at five duct incidences: 90°, 80°, 70°, 60°, and 50°. The trim
condition was level flight, and the fuselage attitude was set equal to
zero in trim. Experimentally determined model trim conditions are shown
in Figure 8. The data and the results of the analyrsis are discussed in
terms of model parameters in this section. A detailed numerical example
of the analysis procedure at a duct incidence of 70° is presented in
Appendix II,

First, it is desirable to make = few remarks regarding the analysis of
transient response data for higher than second-order systems, If a system
has an unstable mode present in its transient response, it is difficult to
measure (from the time history of the motion) the characteristics of any
mode but the unstable cne, which will dominate the motion irrespective of
the nature of the disturbance. Therefore, certain practical limitations
are placed on the determination of all of the stability derivatives of an_
unstable aircraft, since the characteristics of all the modes cannot be
accurately determined. This limitation in analyzing transient response
data of multiple-degree-of-freedom systems can be surmounted by the use of
limited-degree-of-freedom tests, as may be seen from the following dis-
cussion,

The measured chaeracteristics of the transient response consist of the
frequency and damping characteristics of the dominant unstable mode. When
a component of the transient motion is purely divergent, it has been found
difficult to measure the value of the positive real root corresponding to
the divergence. Therefore, transient response datae which involve a di-
vergent mcde have not been analyzed quantitatively, Divergent motions
were eliminated in the single-degree-of-freedom tests (8 only) through the
use of a mechanical spring. The test conditions in which a pure divergence
was present were two-degree-of-freedom motions (e-wf) at duct incidences
809, 70°, and 60°,

Four different combinations of degrees of freedom were measured at all of
the duct incidences except hover: one single-degree-of-freedom motion,
0, (Uf = 0, and we = 0); two two-degree-of-freedom motions, 6-wp,

(Up = 0), and 0-Up, (w, = 0); and the complete longitudinal three-degree-
f £ f
of-freedom motion (e-Uf-wf\.

that are assumed to apply to the data 1s presented in Appendix I. Note
that the following discussion is phrased in terms of space-fixed degrees
of freedom in accordance with the manner in which the tests were conducted.
The space-fixed axis system is shown in Figure 9, and the transformation
from a stability axis system to a space-fixed axis system is discussed in
Appendix I.

The development of the equations of motion
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Measured transient characteristics are presented at the various duct inci-
dences on the complex plane in Figure 10. Frequency and damping charac-
teristics of the dominant mode are presented as a function of rate feed-
back gain and degrees of freedom of the test. The characteristic roots of
the single-degree-of-freedom motion are presented as calculated with the
mechanical spring removed (see Appendix II).

The following general approach was used to determine the stability deriva-
tives. To simplify the discussion, known additional terms due to the
displacement of the cg of the model from the pivot axis and due to the
model mounting linkage mass are not included in the discussion that
follows (see Appendix I).

ONE DEGREE OF FREEDOM

First, the one-degree-of-freedom results were analyzed. At all duct inei-
dences except iy = 50°, a mechanicel spring was added about the pitch axis

of the model to provide a restoring moment proportional to model attitude
such that the angular motion of the model would be oscillatory, and thus
could be analyzed more accurately in the flight conditions where the
angle-of-attack stebility of the model was positive (Monf > 0). Positive

angle-of-attack stability will result in a divergent motion of the model

in one degree of freedom if no restoring spring is provided., The spring
constant of the mechanical spring was selected so that the frequency of
motion in one degree of freedom was similar to the frequency of the free
motion of the model in the multiple-degree-of-freedom tests. At the
highest speed (lowest duct incidence) tested, the angle-of-attack stability
was negative (MWUOf < 0) and therefore no spring was used.

As shown in Appendix I, the equation of motion that applies to the single-
degree-of-freedom tests is equation (18), with z,, = O.

g
X
6 5+ - (1)
6 - (Mg +MU; )8 +\=— -MU, Jo=0 1
(9 M‘“’f) L felo,

ke is the spring constant of the mechanical spring and is determined by
m

calibration prior to the experiment. The two terms in equation (1), the
coefficients of § and §, are determined by the frequency (wN) and damping

(c) measured from the transient response data (listed in Table I). De-
rivatives, or combinations of derivatives, are found from the relation-
ships

S e el
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4 Values of the derivatives calculated from the measured characteristics of
the transients and the expressions of equation (2) are 1listed in Table IV.

TWO _DEGREES OF FREEDOM

The stability derivatives obtained from the single-degree-of-freedom runs
are now used in conjunction with the data from the two-degree-of-freedom
experiments involving pitch angle and horizontal velocity to find other
stability derivatives. The equations which describe the moticn in this
case are equations (16), given in Appendix I, with m/mt equal to one and

Zog equal to zero.

[
(@]

4 - Xyug + (g - waof) 8 =

(3)

I
(@]

- Mu, + - (Mé + M*Uof) o - Monf )

Wnile three characteristic roots are necessary to delineate this dynamic
condition, only the two which determine the oscillatory mode character-
igtics can be evaluated, as discussed previously. There are three
additional derivatives present in equations (3): XMy, and X;. As may

be seen from the discussion that follows, it is possible to calculate only
the term X, in combination with M,. Analysis of isolated duct data indi-

cates that the term X, U, is negligible compared to g.
f

A convenient way of calculating the two unknown derivatives X, and M, is
to place equations (3) in root locus form, considering M, as a variable

quantity. The Laplace transform of equations (3) is taken, and the charac-
teristic equation is calculated; then, the characteristic equation is
arranged in root locus form as

M, (g - waofE
(8 - X)(F - M5 + 006 T 8 - WOo )

—§ (1)

Now, the characteristic roots of the quadratic factor in the denominator
of equation (4) have been determined from the single-degree-of-freedom
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tests [equation (1)] and are shown in Figure 11 (A). The derivative X,
is then specified by the condition that the root locus for variable M,

must pass through the experimentally measured data (O ), a8 shown in
Figure 11.

The stability derivative M, is determined from the gain [M, (g - Xonf)]

required for the calculated roots to agree with the experimentally measured
roots. The derivative values that were found are listed in Table IV.

Since the two-degree-of-freedom experiments were conducted with various
levels of rate feedback, a verification of the calculated value of X is
possible. It is assumed that fore and aft differential propeller blade
angle produces only a pitching moment, and that there is no lag between

the rate signal (é) and the control actuation (AB”TCH ), so that the effect

of rate feedback may be included as an increment in pitch damping, AMé.

The increment produced by the rate feedback is also calculated. The
characteristic equation derived from equations (3) is rearranged in a form

expressing AMé as variable.

- oMy (s - X,) s
[s = KIS = Ot + 205 ) s - MU 1+ My (g - KU )

The roots of the polynomlal in the denominator of this expression, i.e.,
the poles for the root locus, are the characteristic dynamics with no
feedback, These are known from the two-degree-of-freedom analysis with
no feedback. The zero for the root locus based on equation (5) is located
on the real axis at X;. Therefore, the value of X, is verified from the

condition that this locus, drawn for AMé varying, corresponding to various

feedback gains, intersects the experimentally determined dynamics for
various feedback gains.

The increments in pitch demping, as a function of rate feedback gain,
determined by this procedure, are given in Table IV. The value of X,

determined by this approach agreed closely at all duct incidences with the
value determined from the unstabilized model responses.

Two-degree-of-freedom motions, consisting of pitching and vertical ve-

locity, were also measured. At all incidences except 50°, the character
of this motion was divergent; thus, no analysis was attempted because of
the difficulty, previously mentioned, of making quantitative measurements
of divergent motions. At 50° incidence, the characteristics of this two-

et
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degree-of-freedom motion may be used to determine 7, as seen from
equation (17) in Appendix I, with Xoq W4 3o, equAl to 2ero, as follows:

URLOSEVALEL

- Mo, - (Mg *MU YO -MU 9=0 6)
Mve = My 0 - (g '\:or '\:ot (

Comparison of equations (6) with the single-degree-of-freedom case
{equation (1)] shows that there is one additional stability derivative
present in equations (6); that derivative is Z,. The downwash lag derive-

tive (My) now appears separately from the pitch damping derivative (Mﬁ;

it is therefore possible to obtain an indication of the size of this
rivative from a root locus drawn with 2, as a variable parameter. The

root locus equation developed from equations (6) takes the following form:

-, (s-m)s
s(s® - (Mg + "#Uof]' = "vuor)

-1 (7)

The locations of the two poles, determined from the quadratic factor in
the denominator of equation (7), are the single-degree-of-freedom roots,
equation (1), and therefore are known. The pitch damping is determined
from the condition that the locus of roots with variable 2, intersects

the experimental points. The value of Z, is calculated from the gain

required for coincidence of the calculated and measured roots. At the one
duct incidence, 50, where this analysis was made, indications were that
”ﬁuof was negligible compared to "5°

THREE DEGREES OF FREEDOM

The three-degree-of-freedom motions were analyzed, and the derivatives 2,
and 7 were calculated. In most cases, in the low-speed flight regime,

these derivatives are quite small, producing only small changes between
the two-degree-of-freedom (e-Ur) motion and the three-degree-of-freedom

(e-Uf-wf) motion (Figure 10).
If xw and M* are assumed to be negligible, then the three-degree-of-

freedom characteristic equation develcped from equations (15), in
Appendix I, may be expressed in the following form:

10
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where ‘e d is the characteristic equation of the two-degree-of-freedom
motion and (A ) is the characteristic equation of the two-degree-of-

freedom lotion with M, = O. From equation (8) it may be noted that if M,
is equal to zero, or if Z, and Z, are zero, then there is no difference

between characteristic dynamics of the two-degree-of-freedom motion
involving @ and Up and the three-degree-of-freedom motion (8-Up-wy) aside

from the extra root. It is assumed that X, is negligible, and this is

used for the duct incidences in whi:zh there are measurable differences

botwun the two- and three-degree-of-freedom motions. The polynomials

8g.u (Ao ) have known coefficients from the two-degree-of-freedom
’

analysis. !quation (8) is rearranged in root locus form as

- 3, [“o,u), - M, %‘] N

s A

(9)

0

Now the value of the quantity 2,g/Z, will determine the location of the
zeros of equation (9). It is found that the locus of roots for Z, varying,
at a constant value of the ratio 2,/2,, must intersect the experimentally
measured values of the fraquency and damping. The value of Z, is calcu-

lated from the gain required for coincidence of the calculated and experi-
mental points. Then, 2, is determined from the known Z,¢/Z,. The sta-

Y1lity derivatives determined in this fashion are listed in Table IV.
This procedure was generally followed at all duct incidences, to evaluate
the stability derivatives of the vehicle, with minor variations as noted
below.

= 600
1d90

Only the single- and two-degree-of-freedom (e-u ) motions were analyzed.

Experimental results showed, as would be cxpoctod from symmetry consider-
ations, that the w, motion was not coupled to the (0- t') motion., It is

not possible to determine Z, in hovering because of the nature of the
tests conducted.

In hover, three test conditions representing different blade angle and

1
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propeller rpm settings were investigated. Two of the test conditions
utilize different combinations of blade angle and rpm to produce the same
total thrust (vertical force equal to the weight of the model): 8,4,
equal to 25.8 degrees, rpm equal to 7000; and B .4, equal to 29.2 degrees,
rpm equal to 6400, The third test condition uses another combination of
blade angle and rpm, resulting in a lower total thrust than previous cases:
8.9sa qual to 25.8 degrees, rpm equal to 6400. This combination of blade
angle and rpm produces a hover thrust of 43.1 pounds, corresponding to a
scaled gross weight of 14,000 pounds for the Bell X-22A. Note that the
weight of the model is 51.5 pounds in all cases, so that only two-degree-
of-freedom (e-uf) motions were examined in the low thrust case.

Dimensional analysis can be used to demonstrate that for the two test
conditions at the same propeller blade angle, if the time scale of the
dynamics is nondimensionalized by the rpm, then the nondimensional frequency
and damping should be independent of the rpm. This comparison of the two
test cases is shown in Figure 10, The spread in the points is considered
to be within the accuracy with which frequency and damping can be evaluated
from the highly unstable dynamics of this hovering motion.

If the dynamic stability of the vehicle depends only on the geometric
configuration of the vehicle and the duct exit velocity, then there should
be no difference between the dynamic characteristics at the same total
thrust level produced by different combinations of blade angle and rpm.
There are measurable differences, although not large, between these two
test conditions. The results indicate that it is desirable to conduct
dynamic stability tests at the proper blade angle.

1! = 80°

The procedire described above for i, = 90° was followed. No measurable
difference existed between the two-degree-of-freedom motion (e-Ur) and the
three-degree-of-freedom motion (e-Ur-wr); thus, Z, and Z, were not

determined. That is, similar to the hovering case, there is only weak
coupling between the (o-Uf) degrees of freedom and the w, degree of freedom,

It is expected that Z, has a value in this flight condition as it has in
hover, but it cannot be determined from the experiments conducted.

i3 = 70°

The analysis at this trim condition is discussed in detail in Appendix II,
and the transient responses data are shown in Pigures 17 through 28. The
transient response of the model in two degrees of freedom (O'Uf)’ shown in

FPigure 18, exhibited a rate of growth of the dominant unstable oscillation
(with no rate feedback) which was so rapid that it was difficult to measure
the amplitude ratio from the time history, which extends, at most, for one

12
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cycle. Thus, the experimental results for one particular rate feedback
setting (Ké = 0,0l sac) in two degrees of freedom were analyzed. It was

assumed that the increment in pitch damping produced by this feedback gain
was equal to that produced by the same gain setting at 80° duct incidence.
This known increment in pitch damping is added to the value determined
from the single-degree-of-freedom tests. Then the analysis proceeds as
described. The dynamics of the vehicle with no feedback were then calcu-
lated from the resulting derivatives. The resulting characteristic roots
agreed with the information that could be determined from measured
transients. The increments in damping corresponding to other feedback
settings agreed closely with those in the 80° case, as shown in Table IV.
This confirms the assumption, inherent in this approach, that the moment
produced per degree of differential fore and aft blade angle at i3 = 80°
is equal to that at 14 = 70°.

1d = 6°°

It is necessary to add certain known terms to the equations of motion at
4= 60° to account for the displacement of the cg of the model, with

respect to the pivot axis, as explained in Appendix I. Values of these
terms, which were added to the equations of motion before proceeding with
the analysis, are listed in Table IV. No alteration in the analysis
procedure is required, since only known terms are added to the equations
of motion. :

In addition, a complication associated with the model control system was
encountered at this flight condition, When the carriage was commanded by
the model to accelerate to follow the model motion at these relatively high
trim speeds, the increased current drawn by the carriage drive motor caused
a noticeable drop in line voltage. This line-voltage drop affected a power
supply in the model control system, producing a propeller blade angle
change of equal value on all four oropellers approximately proportional to
carriage (model) acceleration. The configuration of the vehicle is such
that total propeller blade angle change causes pitching moments (Reference
3), thus providing an apparent pitching moment variation with horizontal
acceleration. It was assumed therefore that this effect could be accounted
for by adding the unknown derivative Axvj,‘_.’.p to the analysis. It is then

]

possible to analyze the data, remove this effect, and determine the sta-
bility derivatives by an analysis similar to that described above.

Modifications to the model control system were made such that this coupling
phenomenon was eliminated in the 50° duct incidence tests and all future
tests.

= 500
i 50

The 50° case also required additional terms in the equations of motion to

13
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f §< include tne effect of the displacement model cg from the pivot axis. Also,
i as mentioned earlier, no mechanical springs were used in the single-degree-
3 of-freedom tests since the angle-of-attack stability derivative was nega-
Y tive (Mon < 0). Otherwise, the analysis proceeds as described.

. (i f

e e ke o mas

Table IV lists the stability derivatives found in model scale based on
the inertia characteristics listed in Table III.

The model scale deriva-
tives are also shown graphically in Figure 12,

1k




STABILITY DERIVATIVES OF THE FULL-SCALE ATRCRAFT

The stability derivatives determined for the model can be interpreted in
terms of full-scale aircraft characteristicc.

It is, of course, necessary to assume that there are no scale effects to
make this interpretation. Comparison of the 1ift, drag, and pitching
moments on an isolated duct of the model and the full-scale aircraft re-
vealed that there were no appreciable scale effects on the model duct in
the flight conditions of interest (Reference 1). Therefore, imporiant
scale efferts are not expected to be present in the results.

Rather than present nondimensional derivatives, it is considered to be
more convenient and conventional to present dimensional force derivatives
divided by the mass of the aircraft, and pitching moment derivatives
divided by the inertia. The full-scale derivativ:s are based on the
moment of inertia of the Bell X-22A, as given in Reference 3.

The dimensional full-scale derivatives are listed in Table VI and are

shown graphically in Figure 13 for the full-scale aircraft, using the
altitude gross weight equivalence discussed in Appendix III. The relation-
ship that applies for the test progrem is shown in Figure 14, and the
conversion factors that result are given in Table V. Thus, for example,
the derivatives presented correspond to the X-22A flying at a gross weight
of 16,800 pounds at sea level or a gross weight of 14,000 pounds at a
density altitude of 6000 feet.

The stability derivatives show the following trends.

THE SPEED STABILITY (M,)

This derivative is large and positive at the three highest duct incidences
tested; it decreases considerably at duct incidences of 60° and 50°. The
large value near hovering and in low-speed flight is the primary source of
the oscillatory instability present in the data; also it indicates that
the vehicle will exhibit an appreciable sensitivity t»> horizontal gusts.

THE ANGLE-OF-ATTACK STABILITY (MU, )
f

This derivative is fairly large and positive (unstable) at all but the
lowest duct incidsnce tested. At a duct incidence of 50°, the derivative
is negative. The unstablie value of the derivative contributes to the
instabilities of the motion at the higher duct incidences, and the change
in sign is the primary contributor causing the stable motion at a duct
incidence of 50°. The trend in this derivative is typical of V/STOL
aircraft at low speeds.

15



i

B o v b oG S e o

THE PITCH DAMPING (fé_)

This derivative is comparatively small and negative and generally increases
with decreasing duct incidence. It is not clear at this time why the trend
in this derivative does not follow a smooth curve, The low values indicate
that the full-scale vehicle would require damping augmentation to provide
satisfactory handling qualities at low spceds. The small value of this
derivative may be seen by noting the large increments in damping (roughly
a factor of 10 at duct incidences of 80° and 70°) required to make the
transient motion neutrally stable.

THE DOWNWASH LAG (My)

All indications from the data are that this derivative is small compared
to the pitch damping.

THE RATE OF CIIANGE OF HORIZONTAL FORCE WITH HORIZONTAL VELOCITY (Xu)

This derivative is large and negative at low speeds. The primary source
of this der vative is the momentum drag of the ducts.

THE LIFT CURVE SLOFE (Z,)

This derivative is small and increases with speed. The value of the
derivative was not determined in hovering. The values at low speeds must
be considered as approximate, since there is only weak coupling between
the two-degree-of-freedom (9-Us) motion and the three-degree-of-freedom
(O-Ur-wf) motion. This makes it difficult to determine Z, accurately.

THE RATE OF CHANGE OF VERTICAL FORCE WITH HORIZONTAL VELOCITY (Zu)

This derivative is small and of normal sign (negative) in the cases where
it vas evaluated.

THE RATE OF CHANGE OF HORIZONTAL FORCE WITH VERTICAL VELOCITY (Xw)

This derivative is normally small and was not determined from the experi-
ments. It was assumed to be negligible in the analysis.

16
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CONCLUSIONS AND RECOMMENDATION

CONCLUSIONS

1. The pitching moment derivatives of this quad configurat on V/STOL
model exhibit the following characteristics:

a. The speed stability (M,) is large and positive (statically stable)
at high duct incidences.

b. The angle-of-attack stability (M, U, ) is positive (unstable) at
g
all but the lowest duct incidence tested (50°).

c. The damping in pitch (Mé) is stable but small in hover and
increases with decreasing duct incidence.

2., For analysis of the data, the inclusion of test conditions with pitch
rate feedback was valusble, particularly in the experiments where the
basic model was highly unstable.

RECOMMENDATION

It is recommended that an effort be made to correlate the results obtained
herein in the form of stability derivatives with full-scale flight-test
data on similar configurations,

17
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TARLE TI, SCALFE FACTOKS FOk D'YLAMIC MODEL SIMILAKITY
Multiply full-scale property by scale factor togigtlin nidel property.
For A, = 0.14%3
), 0.1443
A 2112 x10°?
22 3,071 x 10°3
¢ hJW63 x 10
M 6,L87 x 10°#
xLO.D 0.3812
0o 1.000
2O 2,623
A\, C.1443
g, P %, 381
o o 24623
LWL LS ok
B % 0.3812
m:del linear dimensicr
full-scale linear dimension

Linear dimension
Area

Volume, mass, fcrce
Moment

Moment of inertia
Linear velzeity
Linear acceleration
Angular velocity
Angular acceleraticn
Time

Frequency

Reynolds number

Mach number

where xt -
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TARLE IV, MODEL STARILITY DERIVATIVES FOK TRIMMED LEVEL FLIGHT

Duet Incidence
(deg)
90 80 70 60 50
Model Trim Velocities and Aerodynamic Derivatives
po ft/sec 0 10 22 28 %
b. 1/..c '053 'ol‘s -070 'n6° "050
E. 1/sec Assumed Negligible in all Cases
E.. 1/sec Neg Neg -.19 -.655 -.830
E. 1/sec NA NA T -.675 -.895
,» 1/ft-gec +,307 +,421 +. L8l +.157 +,154
» 1/ft-sec NA +,255 +,297 +,110 -.160
u‘. 1/”c .ou .oha .0955 -05!' 'c%h
Additional Stability Derivatives Due to cg Offset
o ’ I;!E 0 0 o '0030‘ '003!‘
, 1/1¢ 0 0 0 +,125 +0.13
cg
s 1/sec® 0 ¢ 0 -.98 -1.09
<K
Mditional Stability Derivatives Due to Stability Augmentation
» 1/sec
F:é- .027 NT NT NT -2.59 NT
Fé = ,030 NT 4,37 -4,35 NT NT
&- .Olk NT -8.15 -8.15 NT NT
ﬁ- .060 NT -11.9 -11.02 NT NT
Iﬁﬁ". 1/rt 0 0 0 +.075 0
Abbreviations: NA Not Available
Neg Negligible
NT Not Tested
Test Conditions given in Table I
rtia acterjstic n in_ Table III
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TABIE V. INTERPRETATION OF FORCES, MOMENTS, AND VELOCITIES AT
OTHER GROSS WEIGHTS

Altitude
Gross Weight

Velocity
Gross Weight

Forces

Moments

Velccities, angular
and linear

Air density

Angles

=

where Aw = L2 =

A,
Ay

desired gross weight

Ay
Ay

1\,.5 ‘

Q: gross weight determined by dynamic scaling

dynamics.

To determine aerodynamic quantities at other gross weights, multiply
dynamic scaling results by the above quantities.

NOTE: Use of the first column results in no change in dynamic stability
characteristics. Use of the second column results in changes in

25
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3
« TABLE VI. FULL-SCALE STABILITY DERIVATIVES FOR TRIMMED LEVEL FLIGHT
¥
g Duct Incidence
(deg)
90 80 70 60 50

]

Uof, ft/sec 0 26.2 57.5 73.4 94,2
:

X,» L/sec -.20 -.17 -.27 -.23 -.19

X 1/sec Assumed Negligible
[}
Z,, 1/sec Neg Neg -.073 -.25 -.32
k
Z,, 1/sec NA NA .05k -.26 -.3b
M,, 1/ft-sec | +.017 +.026 +.028 +,011 +.011
i
‘ M, 1/ft-sec | NA +.015 +.017 +.0077 -.0112
!
Mg, 1/sec -.17 -.20 -.40 -.26 -.k2

Abbreviations: NA Not Available

Neg Negligible
See Figure 14 for density al'-.itude/gross weight correspondence.
Radius of gyration k, = 8.5 ft.

26




Figure 1. [rinceton Dynamic Model Track - Model Mounted
on Longitudinal Nynamic Testing Apparatus.
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Figure 13. Full-Scale Stability Derivatives and Trim Condition for
Altitude/Gross Weight Correspondence Shown in Figure 1k

(ky = 8.5 ft).
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APPENDTX T
EQUATTONS OI ‘*0'TTON

Linearized equations of motion, npplicable to the analysis of various ex-
perimentally measured respunses, are presented ‘n this appendix.

The longitudinal equations of motion tha! describe the small perturbation
motion of an aireraft from initially level flight, using a stab{lity axis
system (Rcfovcnes £, we.

U-Xu-Xw+ge=0
W B - By - Up § = 0
MW + Mgw + Myu + Méé -§=0 (10)

Two derivatives Xé and Zé that are usually small are neglected.

Since all of the transient responses were measured and are presented in
terms of space-fixed variables, it is convenient tc transform equations
(10) to a srace-fixed srstem (Figure 15), with the X, axis parallel to the
horizon, by -he fcllowing transformations:

u=u, - W e
f °f

w w

g * Vo, ® (11)

where W, 1is equal to zero from the condition of initially level flight.
o

Substituting the relationships of equation (11) into equations (10), the
following equations result:

it
o

Up = Xup = Xowe + (g -Xonf) )

Gf = LM = Zyup - szor 6 =0

8- (4 *%”o,)é'W"o,°'%“f'“a‘r'".'f‘° (12)
8
——— —————




Beocuue ou certaln features of the model and the apparatus, three modifi-
cutiong tn these equatiunn are naceasary such that they will apply tc all
test, condivlons,

1,

v AR L T b Y
g T |~y

- ke

e i

There are two linkages required to attacn tne mudel Lo L uorye
transducers and mounting system used for this type of testing.
These supports provide the horizontal and vertical translational
degrees of freedom and contribute additiornal masses (mh and mv)

that "fly" slong with the model and, thercfore, must be ecceler-
ated by the model, The two linkages are relatively light in
retant compeved to the "flying" weight :.{ the model but never-
thalacs ehmld be arrounted Mor oy additlonal mass tewms in the
equations of motion., Generaelly, the arrangement and weights of
these two supports are such that the mass accelerated by the
model in the horizontal direction is larger than that accelerated
in the vertical direction, If my is the total mass of the model

resting on the pivot axis (Figure 16), then the tctal lifted mass
of the model m when "flying" is equal to m, plus the mass of the

vertical link m, or m = Ty + m,. Similarly, the total accelerated
mass in the horizontal direction me is equal to my +m, + my, or
m + my. This < aamic modrl mount characteristic requires the

modification of all terms in the horizontal force eque*’-~n, axcept
the arceleration term, by a mass ratio defiuned as m/mt and equal
e u.936 in value.

{
!
l
¢

1. zertain of the test conditions, as indicated iu Table Ili, uug
ce . the model was not located at the pivot axis of the model.
Equations (12) may be considered to be written about the pitch
pivic axis of the model, which represents the full-scale cg
pcsivion about which the derivatives are determined. Additional i
terms z>-2 necessary in the equations ~f motinn to account for the i
displacexznt ¢ Liie model's cg. These are:

AM"‘cs ) z°§ym'9 “

"

o]
-
b

Veg ay
W oz
cg
aMy = - pI (13) ;
cg y ®
wvhere n, and Hp are res, cctively the pivoting mass and pivoting g

veignt cf the model.

v
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3. In certain of the tests (single degree of freedom only), a
mechanical spring was added about tho model pitch axis to provide

[ a restoring moment which produces an oscillatory motion of the

model., In these experiments the following term should be added:

s

.. in
AMem I, (14)

In the experiments where a spring was employed, the value of the

spring constant, ke » 1s as given in Table III,
m

Adding the necessary terms to account for these three effects, the com-
plete equations of motion that upply to the measured transients obtained
in this facility are:

ﬁf-,%xuuf-%xwwaf,%(g-xwuof)e-o

&f-zwwf-zuuf-zwuofe=o

. " kB Wn 2 2 ‘
o - (Mé + Monf) ) +<?y’3 - Monf + Pche) o+ mpTycg u, - Mu“f
- (Mv'f + LEI:C ) v‘rf - Mwwf. =0 (15)

This set of equations would apply for the three-degree~of-freedom tests if
the k. terms were removed.

O

For the restricted degree of freedom tests, the following reduced sets of
equations apply.

1, 1In two degrees of freedom, with ke = 0O
m

9, u, (wf = Q)

ﬁr';:&:“f"mt(g"gvuor)e'o




e’ wr (u!- L O)

Wo = By - B, @ = 0

W.
+_p!§°_‘9.(n‘-,+

k
6 - (Mg +M,-,Uof) é +(

6 - (M * MU, ) 6 - MU,

=

Mg = M5 *+ Kg Myy

51

;) Wy 2
B .MU, + L-CB
Iy ° Iy

3. In the experiments where feedback is used, a term MA'

; 88y vy = K5 6

piTCH

wr-M,,wr-O

PITCH

By substitution of these expressions into the pitching moment
equation, an effective pitch damping is obtained

b - (Mé+M¢,u°r)é-n'uore +‘!21-32l9 *5'152'&:'“““:'0

(16)

an

2. In the single-degree-of-freedom experimants, with the mechanical
spring and u, = 0, Wo = 0, the equation that applies is

(18)

A"l TCH

should be added to the right-hand side of the pitching moment
equation, and then the equation governing Ag is

(19)

(20)

Gp AR DT, Lo e Ly VSR e Ry o
oAt R 4 2 ah B Bk L5




SPACE-FIXED AXIS

\\\\ Uf =Lbf+ﬂk

# ~— Horizon
l’Of uf w; ‘\\~Jfg'.'

%""'\nq.,.

/
.

-

STABILITY AXIS
Perturbed orientation
\tfx/ of axis Us Ugsu

initial orientations
of axis

(body fixed; inilially aligned with tresstream
velocity at forward speeds or with horizon in hover)

Figure 15. Definitions of Space-Fixed and Stability Axis Systems
/Variables Are Shown in Their Positive Sense).
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Figure 16. Model and Link Mass Arrangement and Reference System
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APPENDIX II
NUMERICAL EXAMPLE

In order to illustrate in detail the method used to analyze the data, the
calculations at a duct incidence of 70° are presented in this appendix.
Data at this duct incidence from Reference 2 are repeated here in Figures

17 through 28.

First, the single-degree-of-freedom data were analyzed. From Appendix I,
the equation of motion is

ke W
5""5*'%%,)6*(?:-&0%*—’—1?)9-0 (21)

The mechanical spring constant, ks.

18.1 foot-pounds per radian; W, 2o is found to be 1.89 foot-pounds per

radian and arises from the fact that the cg of the model is below the
pitching axis for this single-degree-of-ficedom test. With the model's
motor off and the forward velocity equal to zero, measurements were made
to determine the moment of inertia. The aerodynamic damping is assumed
to be negligible, and the equation of motion in this case is

y is determined by calibration to be

(22)

e*— —

3 ‘;‘;6+(?;+u—’f;-°-‘)o-o

where C, is mechanical damping due to bearing friction. The measured
roots, determined from Figure 17, are
s =~ 0,029 & 2.681 per second
Thus, the characteristic equation is
# + 0,088 + 7.15= 0 (23)
Then the moment of inertia, Iy, is fourd “rom

om * ¥p Zcg
=

= 7.15 per second squared
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and is therefore equal to 2.80 slug-feet squared, and the mechanical
damping, C,,,/Iy, is equal to 0.058 per second. Balance weights present in

the model-motor-off tests produced a moment of inertia increment of 0.65
slug-feet squared. The moment of inertia of the model for the tests at
forward speed, with propellers running, is therefore 2.15 slug-feet squared.

At the trim speed for duct inciderce equal to 70° (22 feet per seconi) and

rpm equal to 6780, the single-degree-of-freedom roots measured from figure
17 are

8 = - 0.57T £ 1.571 per second

The characteristic equation is

s + 1.1bks + 2,785 = 0 (24)

Thus, by comparison with equation (18),

"p Zog . Om _
I

T Monf = 2.785 per second squared
y Yy
- (cin + M2 + MU, ) = 1.1L4 per second
I, 8 0p

Substituting for Wy, z.g, kem, Iy, and Cp,

-

Monf = 6.62 per second squared

- (Mé + MJUof) = 1.07 per second
In all trim conditions, as in this example case, the mechanical damping
was small in comparison to the aerodynamic damping.

The pendulous and mechanical spring terms are now removed from the equation
of motion in order to proceed to the two-degree-of-freedom case.

The re-
sulting single-degree-of-freedom equation is

2 +1.14s - 6.62 =0 (25)

The moment of inertia in the two- and three-degree-of-freedom cases was
slightly different from the single-degree-of-freedom case due to balance

25
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weights and is equal to 2.23 slug-feet squared. With this modification,
the above equation becomes

£ +1.09s - 6.39 =0 (26)

Now, in the two-degree-of-freedom case, the moticn of the model was highly
unstable, as shown in Figure 18, making it difficult to measure the period
and damping when there was no feedback. The two-degree-of-freedom case
with a feedback gain Ké equal to 0.04k4 second, shown in Figure 22, was

analyzed, assuming that the damping increment produced by feedback (see
Appendix I) was equal to that at the same feedback gain at a duct incidence
of 80°. The increment at a duct incidence of 80° had been determined
previously. From Appendix I, this damping increment AMé is equal to

KSQAB and therefore is equivalent to assuming that the control
PITCH

effectiveness is the same at 80° as at 70°.

Mg was determined to be equal to - 8.15 per second at 80° duct incidence.

This value of damping is added directly to equation (26) to yield
s + 9.24s - 6.39=0 (27)
The roots of this equation are

5= - .89 per second
s,= + C.65 per second

Now we proceed to analyze the two-degree-of-freedom motion. Note that at
this duct incidence the model cg was coincident with the pivot axis.

The iquations of motion are, from Appendix I, (with xcg and zcg equal to
zero),

ﬁf-%&uf+%(s-mof)e=o
- Mg, +§ - (¥ Hg-,uof)é-u\,ucfeao (28)

The notation ﬁs implies that the damping includes the effect of feedback.
m/'mt is the factor due to the model mounting linkage and is equal to 0.936.

Taking the Laplace transform of the above equations, and placing the
characteristic equation in root locus form, considering Mu as the unknown
parameter, we obtain



0.936 Hu (g - xwuor)
(s - 0.936 X,) (& - (ié ¥ “&Uof) .- &,Uof)

o (29)

The quadratic factor in the denominator is that determined from the
single-degree-of-freedom tests [equation (16)] and has roots equal to
- 9.89 per second and + 0.65 per second.

Placing these known quantities in the above equation, we obtain

0'9% &l (8 - xwuo )
(s = 0.936 X,)(s + 9.895(5’- X R

(30)

The measured oscillatory dynamics for thiz two-degree-of-freedom case are
(at Ke = 0,044 second)

s =+ 0,05 £ 1.04i per second

The known poles ( &\ ) from the single-degree-of-freea’m analysis and the
experimentally measured roots ((©) ) are shown on the complex plane in
Figure 29.

Now, there is cme unknown pole located at 0.936 X, ({0 ). The location on

the real axis is determined from the condition from equation (30): f
positive M, the sum of the angle contributions from the poles (A,5 )

at the roots ((® ) must be equal to 180°., From Figure 29, the angle
contributions from the two known poles are

s = + 0,65 per second o = 117°
g = - 9,89 per second ap = 6°

The unknown pole (0.936 X,), therefore, must produce an angle contribution

of 57° to make these three angles add up to 180°, It is located at - 0.6
per second, as shown on Figure 29, This calculation yields a value of
X, equal to - 0.64 per second. Now the root locus for varying M, is

drawn as shown on Figure 29, and the gain at the experimental two-degree-
of freedom roots ((® ) is calculated. This will determine the product
N, (g - x,uot). The gain calculation is

(1.17)(1.23)(10) 5
N R ) o T v




T™he isolated du' t data of Reference 1 indicate that x"u°t‘ at this flight
condition is negligible compared to g and, therefore,

M, = 0.478 per foot-second

With this information we can calculate the real root that corresponds to
the two-degree-of-freedom motion from the characteristic equation. Taking
the calculated values of M, and X, and placing them into equations (28),

the characteristic equation is calculated
# +9.92 & - 0,528 +11.73 =0 (31)

The roots of equation (31) are

8, = - 10,02 per second
8,,, =+ 0.05% 1.04i per second

Now we return to the equations of motion (28) and rearrange the character-
istic equation in root locus form, considering M9 as a variable parameter

to determine the agreement among the derivatives found at a Ke- = 0.Lh

second and the other two-degree-of-freedom cases with different levels of
rate feedback. In addition, the data can be extrapolated to calculate the
dynsmics of the vehicle with no feedback. The measured dynamics at other
feedback gains from Figures 21 and 23 are

Ka = 0,030 second 8 =+ 0,31 £ 1.251 per second (b)

Ké = 0,060 second s = - 0,01 £ 0.931 per second (%)

The equation for the root locus diagram for variable Mé is

(- awg) s(s - 0.936 X))

- =-1
(s - 0,936 X,) (& - (i + 450, ) s - M,,uof)) My (8 - %0

(32)

All of the stability derivatives in this expression have been determined
except Aué and may be substituted giving

(- mé) s(s + 0.60)
(s + 10.02)(s - 0.05 + 1.041)(s - 0.05 - L.Ob1)

-1 (33)
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The root locus for variable AM@ may now be sketched as shown in Figure 29.

Note that this locus provides a verification of the previously calculated
value of X,, since it must pass through the other experimental points for
different feedback gains. The 0° locus (---) shows the trend for de-
creasing feedback gain, and the 180° locus (=) shows the trend for in-
creasing feedback gain. The root locus passes thrqugh the other two
experimentally measured characteristic roots (b ) and verifies the
value of X,. Now, the increment in damping provided at the experimental

points, as well as the root location with no feedback, may be calculated.

The damping increments as calculated from the locus aie

From l(é = 0,044 second to Ké = 0,030 second

AMG = + 4.1 per second
From Ké = 0,044 second to Ké = 0.060 second
A"g' = - 2.3 per second

Now the location of the unaugmented rcots of the vehicle may be calculated
by finding the root location where A"é = + 8,15 per second., This calcu-

lation yields for the characteristic roots of the unaugmented motion ( ®)
s = 1.00 + 1.451 per second

The transient motion corresponding to this calculated result agrees
closely with the time history of the measured model motion shown in
Figure 18. The 8-w, motion is shown in Figure 2k, This motion was not

analyzed due to the highly unstable character of the motion.

Now we proceed to consider the three-degree-of-freedom motion, using the
data with feedback shown in Figure 28. Data at other levels of feedback
are shown in Figures 26 and 27. It is assumed, as indicated by the static
isoclated duct data of Reference 1, that X, is negligible. In this case,
the complete characteristic equations (as obtained from equations (15),
where X, = O, zcgso, xcg-o, andkom-O)u'e

m m
ﬁf"'-tx““t’i"°'°

t
~Lp * W, - ANV - Z'Uore o
. e et R B (“6 (. M\'tuof) é - "vuor il . (34)
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The characteristic equation can be arranged in the following form:

sag,) - % (g, -4, 3£)= o (35)

where A. is the characteristic equation for the two-degree-of-freedom
motion, and (A' ) is the characteristic equation of the two-degree-of-
freedom motion \dth M, = O. The coefficients of these two polynomials may
be calculated. M, is known from the one-degree-of-freedom analysis, and
80 we may find the two urknowns Z, and Z, as follows by placing this
equation in root locus form, considering Z, and Z, as unknown.

Z8
B ((""‘)o " lv)_ .1 (36)
(ag, )

The poles of this expression are known, having been determined from the
two-degree-of-freedom analysis. fHote that this case has a feedback gain

Ka = 0,030 second

Thus, the characteristic equation that determines the poles is

By, = (8 - 0.936 X,)(&* - (g + "’"“r) s - ""’%’ + 0,93 g M, (37)

Substituting the previously obtained values of the derivatives, this
expression reduces to

5’“ =g +5676 -2.915 +11,83 (38)

The roots of this polynomial are

8, = - 6,29 per second

8,3 " * 0.31 & 1.251 per second

the s, along with s = 0, of the root locus expression,
(ﬁmm-mumﬂ(e)



Part of the numerator of equation (36) is calculated with M, = O and is
equal to

(A° ) =g + 5,67 + 3,04 +15.%
L

The roots of this polynomial are

s, = = 5.18 per second
8,,3 = - 0,065 £ 1.731 per second

and are also shown on Figure 29 ().

First we sketch the root locus for the factor in brackets in the numerator,
expressing it in root locus form as

.
) o (39)

Now, this root locus is drawn on Figure 29 (---), and the location of roots
(taken in conjunction with the complete root locus equation), that
satisfies the 180°-angle condition at the three-degree-of-freedom experi-
mental roots () is determined. The experimentally determined charac-
teristic roots for the three-degree-of-freedom motion are,

S, 2" * 0.25 ¢ 1.321 per second

The location of the roots of equation (39), which are the zeros of the
root locus equation (36), was found to be at

s, = = 4,56 per second
8,5 = = 0.32 & 0.761 per second

and are shown on Figure 29 as ().
Then the gain at this point is calculated to yield the value

&%-IB.Imucmch (o)

Now we may sketch the complete root locus based on ejuation (36) to
determine Z, with poles (O ) and zeros (D). The locus is drawn with

Z, varying and the ratio Z /2 constant as shown on Pigure 29 (—).
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The gain calculaticn yields
Oy = = 0.137 per second

Then, snoving M,, the value of Z, is calculated from equation (40) as
Z, = = 0.19 per second

This completes the analysis of the 70° case and this numerical example.

The analysis of the other cases follows a similar procedure as described
in the text.



Cme ambaas o bn o usi e ot

!-40

-20
i
$ 20

§ 40

6 deg/%c

g

i KL
M i
AL i

i

555 iR

g 5 ) 0 5 O 0
| rm <6700, Uy +22 /00t | | l] |

Lt u gttt 1 tal.d 0

.

HERT o
|
|

L1

lr!- ..-“"' Uf -:ﬁ- I.:‘

L b L | 1 1 1

Figure 17. Self-Excited Transient Response, One Degree of Freedom, 8.
No Stability Augmentation.,

63

ig = T0% B.,ga = 25.2°

RTINS SO . F LR LY PR W OTU VT SRR o T

e




—

*08L9 = wdx ‘,z°9z = ¥S¢'g ‘.0l = Pr cuorgmjuswSny A3TTIqRIS ON

.uD-c ‘wopsaad Jo Svaadag oM °sasuodsay juaisuBd], pPa3IoxX3-JToS *QT aamItd

e = &~
-y
| ° -
@ = -n
5 - -
'" ~
® 4
o o
Qb § o ..9
[ 3
i s
W =
§s g
2 or *
s $° @
o 3
o- 12 :
o..u
£€6 NNV |
;
- I




e o y
«lOlw ©0099° evo9ewn
' 4. ... Ne &~ - -
UMOp 980U On 950U  ymop esou dn SOV piomio;
b ‘g ses/bep ‘g ses/1 * i
4 . - A_
!
i
i 1
e = e
AR S8y ST
piomiIo; 1109 19U) 109 J00p 1109 294 109 200p
VTR dop* Sdgy bep * Sgy

6780.

Two Degrees of Freedom,
26.2°, rpm

id = 700, a.—;gg -

= 0.021 sec.

e

Self-Excited Transient Responses.
K.

G-Uf.

Figure 19.

65



l [ %!

L

0, &
“.““ e W asee

0 ¢og/oee

$

- v

-

- o

- B
-

g

inor coll

Aﬂ" , Gog

ABpg 1 ey
docr coll iner soll gdoor ool

Figure 20, Self-Excited Transient Responses. Two Degrees of Freedom,

0-Up. Kg = 0.027 sec. 14 = 70% B ,sa = 26.2° rpm = 6780.

66




e

Uy, 11/ 008

ferweard

o dog
docr cell incr ooll

AByy

ABpg . deg
decr coll incr coll

Figure 21.

v 0 SNTINE S LT AR S

A I Y TS G S PP MO Y A

Self-Excited Transient Responses.

8-Us. Ké = 0.030 sec. 14 =70°,

67

Iwo Degrees of Freedom,
Bose = 26.2°, rpm = 6780,

B R T Y L I T I

'.
:
3
3
E

i, R, s g ST o

T T C I

W’m" T




ferward

ABpy 0o
dosr ooll iner coll
o

8Bpg . dog
docr soll iner ooll
(]

Figure 22,

Self-Excited Transient Responses. 1Iwo Degrees of Freedom,
GRS Ké = 0.0k} sec. i = 70°% B.osa = 26.2° rpm = 6780.

68




il

§iete

i t'i‘

— -

1}

$g°ge sigtte ~-eir o id

~ v
umop esou dn es0u piomio} 1109 J3u) |00 J00p 1109 22u1 1109 J20p
ses/bep g sessip bep* Sdgy bep * S¥gy

Two Degrees of Freedom
= 26,2° rpm = 6760.

iy = 70°% 8,784

x‘ = O.(‘O sec,

e -Ur -

Figure 23, Self-Excited Transient Responses.



e )

! 4 “fgﬁ-,mﬁ =T

h, ft

deg

e,

40

Figure 24. Self-Excited Transient Responses. Two Degrees of Freedom,
8-w,. No Stability Augmentation. 13 = 70% B .nex = 26.2°,

| rpm = 6780.

70




* 'RUN 990

(4]
H
~
(- J
=2
h -]
@
‘®
Q
: 24
~ 9
L™
-~ o 20
- 3
-= 16
52
12
8

F_gure 25, Self-Excited Transient Responses. Three Degrees of Freedom,

6-Up-w,. No Stability Augmentation. i, = 70° B ,4, = 26.2°,

rpm = 6780.



~|J. ] —. , i
3 - .
: . & & T
- 1441
i ettt
ot l -
p—a
+ "
-
T -
i -+ -4
P
- - g T
L - ES ¥
-4 Itf 3 . ﬁﬂi -
e - .”"II
# T
: 4 L
— .m. ..ka
.m “...:L
. UITH
. N R
- .T.ﬂx
=) =
{T. - ot
e +H
. R

OCJ‘ 44 .0

0“0“0 uo. eve

* AP  uaep s .' "'ll piomin

...\ls YRR )

“leTw w<eru

b Sgy e SNy

, rpm = 6780,

Degrees of Freedom

Three
’ ..’.. = 26.2°

R

0-Ug-wp. Kg = 0.021 sec. 1y = 70°

Self-Excited Transient Responses.

Figure 26.



o—————
i

Bre Lhpam -
’ s 5T N

1 TNV

S ATOM s e - e -

i

—t -4

.Wa.w:
; < 1] [ T T T T
W M "m ] _‘le\\ P ER o.
B i 8 7 i B
3 W I f 7T : T w d [+ o)
% ® : + bt +F4 [ ats
& / : ot W : g0
W i i < N
; S — I8 4B H] £,
A v u it h >
: e aass sARRES -
7 - 11 + p &t -~
= Z ; —~ oo
: fiT i ]
LM I N 1G] va 11 H 0o .
WM I ] vl“ " 1 B o \O }
2 - ] T § i o N ;
. E i T i . ; : :
% AT 1 m .
: g T L 1 i [ =1 =
[
o
m @
L
- o
_a o
m =
N [ ]
— o
i Y
il Ld
- &
1 -
—H i m
L4
(]
| ]
D>
t 3
*
G
?
(3
<
®

Self-Excited Transient Responses.

®
§
!
i
L ]
i
!
i
4
I
Figure 27.

Qe




Figure 28.

RUN SO

0, , It 7008
forwerd

o dog

88y

door coll incr coll dece ceoll imcr oell

BBpg. toy

U o

Self-Excited Transient Responses. Three Degrees of Freedonm,

0-UgWs. Ké = 0,030 sec. i, = 70% B ,ga = 26.2°, rpm = 6780.

Th




*w3uq SouSPToUl 3904 0L JO SIEATSUY J0J weiBeiq SN0 J00H *62 8Bt

e R )

ovs $900:5x

12—

—
A

1 . N ’ ' J
1 " o a .
EE————— e e FOSRER SRR R AR T DO L b e ot

(peinimj03) 370d

‘Woa3344 J0 S33WO30 OML
(o4p) 'WOa33H4 40 I3WO3A 3INO \74

(oj0p u_.:I

o IO TR T o WSS STy

WOQ334 40 S3I3H93A




/' D

panutjuo) 6z 9anItg

0l-

NI—\ (- .
|

——— o0 SN207 1004 0> Iy

— o081 SNJ07 1008 O < .mxd.u

LOM

OoW3Z

1004

..l-mY...mw

3Cd

(oi0p)2es 0£0'0= O

(010p)20% 090°0= O
(oiop) 988 0 0= Oy
O

‘n-9°‘m0a33u4 40 SI3W93G oML

76




!
popRTOUnD 62 eamdig *
”»V ‘o
. S (e g- »— 8- o- =
T -
*_ SRAU
100¥ \ iigzﬂl.‘
704 \
—di-
|§
T} = == %04 100¥
— 04 ON2Z \
IVe '’ f
1004 ]
2
WOa33u4 40 SIWOI0 (S9P)INOGIS 40 SIIN0I0 IIWNL
J3HL 01 OML $NO0T 100V (%99)NOG33M4 40 SINEI0 OML
SON3Z 40 SN0V 100N — =~ =

NOO3INIJ J0 SO0




APPENDIX ITI
CONVERSION TO FULL SCALE

The results of the model experiments may be converted to corre:spe. 1 to a
variety of full-scale vehicles of similar geometry to the medel. .t is
convenient tc consider the scaling of the data in two steps.

First, the size of the model is accounted for by using the dynamic model
scale factors given in Table II, The full-scale aircraft of interest here
has a linear scale factor of 0.,145; however, other scale factors may be
selected to correspond to cther geometrically similar aircraft of desired
size, This scaling will imply a certain gross weight for the full-scale
vehicle,

Second, the results may be interpreted at other gross weights by varying
certain of the parameters involved, maintaining the lift coefficient (or
equivalently, the prcpeller thrust coefficient based on forward speed)
constant. As the grsss weight is varied, either the forward speed or the
ambient air density can be varied to preserve the equilibrium lift
coefficient.

These two interpraotaticns, and the appropriate factors to use for gross
weight variation, are given in Table V, We consider here only the effects
cf changes in gr:oss weight; the size considerations have been taken into
account,

VELOCITY - GROSS WEIGHT CORRESPONDENCE

Maintaining the equilibrium lift coefficient of the vehicle at twc differ-
ent grcss weights, at the same altitude, yvields the following relationship
between flight velocity ard ar-ss weight:

LA

%' V.S
Pefining a weight rati: scale factor as
d
=
Mg

the velocity (s scaled as

1
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The advance ratio must also be maintained constant, and sc this scaling
results in a different rpm; i.e.,

Q

2V

In the case of the experiments conducted, (), will not correspond to the
full-scale rotational speed of the ducted propeller, since the model rpm
was selected on the basis of a proper value of (, . Scale factors for
conversion of the data in this fashion are given in Table V.

It is possible to make an assumption that will make a wider interpretation
of the data possible. This assumption is similar to the use of the pro-~
peller thrust coefficient to characterize data on tilt-wing aerodynamics.
That is, if we assume that the aerodynamic stability characteristics of
the vehicle depend primarily on the ratio of forward speed to duet exit
velocity and not on the particular combination of blade angle and advance
ratic used to produce this velocity, it may be assumed that blade angle
and rpm are interchangeable and the scaled data may be applied to other
rotaticnal speeds.

The validity of this assumption has not been checked. Hovering flight
data indicate that there are differences in the dynamics depending upon
the combination of blade angle and rpm used to produce a given thrust, so
this approximation should be applied with care if used at all,

AIR DENSITY - GROSS WEIGHT CORRESPONDENCE

Alternately, the lift coefficient may be maintained constant by varying
ambient air density in proportion to gross weight:

=

=
Po

P |E

Then the data may be interpreted on this basis, where the aerodynamic
forces will vary by the scale factor A, and the reduced gross weight will

be equivalent to flight at a different altitude given by
Po _
e M

In this case, note that
Vo = V%

The scale factors for conversion by this method are also given in Table V.
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In this case, it may be observed that there will be no change in the dy-
namic stability characteristics of the aircraft. This result indicates
that in many cases it 1s desirable, for comparison with flight test, to
test a model that is overweight on the basis of the dynamic scaling law,
since the flight test experiments will always be conducted at altitudes
above sea level. This correspondence for the experiments conducted here
is shown in Figure 1L.
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